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COMMENT 

Comment on an exactly soluble anisotropic percolation 
model 

W Klein 
Center for Polymer Studies* and Department of Physics, Boston University, Boston, 
Massachusetts 02215 USA 

Received 7 September 1981, resubmitted 17 November 1981 

Abstract. We employ a cell-to-cell position-space renormalisation group introduced for 
pure percolation by Reynolds e! a1 to solve exactly a directed percolation problem studied 
by Domany and Kinzel. We show that this model has the same correlation length exponent 
as one-dimensional percolation provided that the proper nonlinear scaling fields are used. 

The percolation problem (Broadbent and Hammersley 1957) has been a subject of 
intense investigation for some time (for an introduction to percolation see reviews by 
Stauffer 1979 and Essam 1980). The primary reasons for this interest are that 
percolation models exhibit a variety of interesting critical behaviour and they have 
been useful models for several physical processes. 

One variation of the standard percolation model, directed percolation, is a par- 
ticularly interesting example of these aspects of percolation. Directed percolation has 
been shown to be a model for Reggeon field theory (Cardy and Sugar 1980) and 
Markov processes that occur in chemistry and biology (Grassberger and de la Torre 
1979, Schlogl 1972). It has also been shown to be in a different universality class 
from pure percolation (Kinzel and Yeomans 1981, Redner 1981a, Reynolds 1981, 
Redner and Brown 1981) and to have angle dependent exponents (Domany and 
Kinzel 1981, Klein and Kinzel 1981), a point we will discuss further below. 

The directed percolation model is defined as follows. Consider a lattice (for 
example the square lattice in two dimensions of figure l ( a ) )  on which bonds are 
distributed at random with a probability p .  In contrast to pure bond percolation, we 
only allow connectivity to 'flow' in one direction on a bond. We will only allow bonds 
to conduct from right to left if horizontal and downwards if vertical (see figure l ( a ) ) .  
So that in figure l ( a )  connectivity can flow from site 1 to site 2 but not from site 2 
to site 1. 

A correlation length &(q) can be defined by writing the probability of a site at 
the origin being connected to a site at a position given by R as P(R ,  q)= 
exp[-IRl/hl(cp)] in the limit of large /RI. In general 

511(q) - ( p  -pc(cp) ) -"""p'  

where q ( c p )  and p,(cp) depend on the angle cp that R makes with a fixed reference 
axis (Domany and Kinzel 1981). 
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l a )  l b )  

Figure 1. ( a )  A cluster of three sites in the directed percolation problem. There is a path 
from site 1 to site 3 but no path from site 3 to site 1. ( b )  All bonds in the vertical direction 
are present with probability 1. 

In addition to the divergence of ( ~ ~ ( c p )  and its angle dependence, there exists another 
diverging length tl(cp) defined by the probability that a site at a position R connected 
to the origin is in the same cluster as a site a distance p along a line perpendicular 
to R (see figure 2). This can be seen clearly in a mean-field treatment (Redner 
1981a, b). 

A s p - + p J c p )  

Sib) - (P - P c ( c p ) ) - y ’ ( ( p )  

where vL(cp) # vil(cp) (Domany and Kinzel 1981). It was shown by Klein and Kinzel 
(1981) that vI(cp) is related to vll(cp) and the crossover exponent. 

P 

Figure 2. The arrows labelled p are along the diagonal of the face of the square. 
Percolation is observed along the vector R which makes an angle cp with the diagonal of 
the face. 

In order to gain insight into the directed percolation problem, Domany and Kinzel 
solved exactly a special case of directed percolation. In their model, vertical bonds 
are occupied with probability one and horizontal bonds with probability p (see figure 
l(6)). They obtained the value V I I  = 2 for all cp except the special cases cp = *7r/4. 

For cp = 7r/4 the problem reduces to one-dimensional percolation where vi1 = 1 
(Reynolds et a1 1977b). This seems to indicate that cp = 7r/4 is a special point in the 
phase diagram of this problem and that there is a crossover from vll(cp) = 2, cp # 7r/4 
to vII = 1 for cp = 7r/4. At present there exists no treatment of the problem that describes 
this crossover. 
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In this comment we derive an exact renormalisation group (RG) which is applicable 
over the entire range of Q. We find that vI1 = 1 for all Q; there is no crossover, but the 
scaling field changes at cp = 7r/4. Our conclusion is based on an RG that employs the 
proper nonlinear scaling fields. 

A 

i: L : L i b  I 
N z N l b  

N 

Figure 3. A cell of N sites on a side is mapped to a cell N ' =  N / b  sites on a side. The 
RG is constructed by requiring the probability that there exists a path from A to B to be 
equal to the probability that there exists a path from A' to B'. 

To construct the RG, consider an N x N cell on a square lattice (figure 3).  We 
calculate the probability that the site in the upper left-hand corner (labelled A in 
figure 3) is connected to a site on the right-hand edge of the cell a distance L from 
the top (labelled B in figure 3).  In addition we require that there exists no connected 
path from A to the right-hand edge which terminates at a point closer to the top of 
the cell than B. In other words, the path from A to B is the shortest path from A to 
the right-hand side. (We can also calculate the probability that A is connected to a 
point on the bottom edge of the cell a distance L from the left-hand side. The resultant 
transformation is the same.) The probability that such a path exists is given by 

( l a )  
N L  P A B = C N L P  4 

where C N ~  = (N+k- l )  (Domany and Kinzel 1981). Now consider the same problem 
on a block N/b on a side. The probability that the shortest path from A' (figure 3) 
to the right-hand edge ending at a point B' which is L' = L/b from the top is given by 

(16) 

We construct the RG transformation by demanding that these two probabilities be 

N '  L.' PA'B' = CN'L'p q 

where CN,,, is identical in form to CNL. 

the same, i.e., 

N + L - 1  

(The idea of a cell-to-cell RG transformation was introduced in the pure percolation 
problem by Reynolds et a1 1978.) 

We do not expect exact results from such a transformation unless the limit N, L -* CO 

is taken (Reynolds et a1 1977a, 1980). In that limit if we define w = L / N  = L' /N'  
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and use Stirling's approximation we obtain 

Taking the logarithm of both sides gives 

In this equation 
The RG transformation of equation (4) has two fixed points given by pq" = 0 and 

(1 + ~ ) ~ + ~ p q ' " / w ~  = 1. The former is stable with eigenvalue 6-' and the latter unstable 
with eigenvalue b. The unstable fixed point determines the critical surface, i.e., 

( 5 )  

in agreement with Domany and Kinzel. 
Equation (4) is valid for all w and the eigenvalue A = b implies VI( = 1 for all cp in 

contrast to the result of Domany and Kinzel. This apparent contradiction can be 
resolved by examining the nature of the nonlinear scaling field $ in the neighbourhood 
of the non-trivial fixed point. 

Although it is possible to investigate the non-trivial fixed point for general'b and 
w, for simplicity we consider the case b = 2, w = 1. For these values equation (4) 
becomes 

and p c  = f. This may be written as 

= ln[(l + ~ ) ' + ~ p q ~ / w ~ ]  is the global nonlinear scaling field. 

( 1 + o ) l + w p q w / w w  = 1 3 p = (1 + w ) - I  

ln(4p'q') = 2 ln(4pq) (6) 

InEl -4(p ' - f )2]=2 ln[1-4(p-fY]. (7) 
In the neighbourhood of p c  = 4, equation (7) reduces to 

( p !  - 1)' = 2( p - 5 )  1 2  

Equation (8), when generalised to arbitrary 6 and w # 0, 
that the  scaling field is ( p  -p , ) ' so  that 

implies that y~ = 1 but 

511-(P-Pc)-2 

( w  + l)"+lpq"/w"+p 

for w # 0 ,  consistent with the result of Domany and Kinzel. 
For w + O  

so that equation (4) reduces to 

l n p ' = b  Inp (11) 
which is the exact RG transformation in d = 1 (Reynolds et a1 1977b). 

The similarity in the form of equations (4) and (1 1) would imply that the anisotropic 
problem with pH = 1 and pv = p is in fact a form of one-dimensional percolation. This 
is also supported by the fact that 0 = 0 for both problems (Reynolds et a1 1978, Klein 
and Kinzel 1981). 

To summarise: in order to have an RG transformation that can treat all values of 
w we are forced to conclude that Y ~ J  = 1 for all w where V I I  is defined by 

(12) 511 - x - "'1 
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where x is the scaling field. The scaling field, however, in the neighbourhood of the 
non-trivial fixed point changes from x = ( p  -P , )~  for w # 0 to x = (1 - p )  = 4 for w = 0. 

It is interesting in the light of the work of Reynolds et a1 (1978, 1980) on the 
cell-to-cell transformation that the RG of equation (4) cannot be reduced to the form 

p ’ =  R(P)  (13) 

To illustrate the point we again consider the case b = 2, w = 1 so that the RG 

with R ( p )  an analytic function in the neighbourhood of the real line for 0 G p S 1. 

reduces to equation (6). Setting p = 1 - 4 gives 

(14) p’2-p’+4p2(1-p)  2 =o.  

Equation (15) has a non-analyticity at p = 4 which is the non-trivial fixed point. At 
p = $, dp’/dp = *W. 

This is of course a consequence of the fact that the scaling field in the neighbourhood 
of p = pc  is ( p  - pc)* and not p - pc.  

In conclusion, we have demonstrated that the use of proper scaling fields eliminates 
the crossover as w + 0. In these proper variables the critical properties become those 
of one-dimensional percolation for all w.  

We have also shown by providing a counter example that the cell-to-cell transfor- 
mation introduced by Reynolds et a1 cannot in all cases be reduced to the form 
p ’  = R ( p )  where R ( p )  is an analytic function of p in the neighbourhood of the real 
p ax i s fo rOGps1 .  
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